Signable Posets and Partitionable Simplicial Complexes
نویسندگان
چکیده
The notion of a partitionable simplicial complex is extended to that of a signable partially ordered set. It is shown in a unified way that face lattices of shellable polytopal complexes, polyhedral cone fans, and oriented matroid polytopes, are all signable. Each of these classes, which are believed to be mutually incomparable, strictly contains the class of convex polytopes. A general sufficient condition, termed total signability, for a simplicial complex to satisfy McMullen’s Upper Bound Theorem on the numbers of faces, is provided. The simplicial members of each of the three classes above are concluded to be partitionable and to satisfy the upper bound theorem. The computational complexity of face enumeration and of deciding partitionability is discussed. It is shown that under a suitable presentation, the face numbers of a signable simplicial complex can be efficiently computed. In particular, the face numbers of simplicial fans can be computed in polynomial time, extending the analogous statement for convex polytopes.
منابع مشابه
Strongly Signable and Partitionable Posets
The class of Strongly Signable partially ordered sets is introduced and studied. It is show that strong signability, reminiscent of Björner–Wachs’ recursive coatom orderability, provides a useful and broad sufficient condition for a poset to be dual CR and hence partitionable. The flag h-vectors of strongly signable posets are therefore non-negative. It is proved that recursively shellable pose...
متن کاملStanley Decompositions and Partitionable Simplicial Complexes
We study Stanley decompositions and show that Stanley’s conjecture on Stanley decompositions implies his conjecture on partitionable Cohen-Macaulay simplicial complexes. We also prove these conjectures for all Cohen-Macaulay monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimension 3.
متن کاملThe Fundamental Group of Balanced Simplicial Complexes and Posets
We establish an upper bound on the cardinality of a minimal generating set for the fundamental group of a large family of connected, balanced simplicial complexes and, more generally, simplicial posets.
متن کاملf-vectors and h-vectors of simplicial posets
Stanely, R.P., f-vectors and h-vectors of simplicial posets, Journal of Pure and Applied Algebra 71 (1991) 319-331. A simplicial poset is a (finite) poset P with d such that every interval [6, x] is a boolean algebra. Simplicial posets are generalizations of simplicial complexes. The f-vector f(P) = (f,, f,, , ,f_,) of a simplicial poset P of rank d is defined by f; = #{x E P: [6, x] g B,, I}, ...
متن کاملN ov 2 00 7 Socles of Buchsbaum modules , complexes and posets
The socle of a graded Buchsbaum module is studied and is related to its local cohomology modules. This algebraic result is then applied to face enumeration of Buchsbaum simplicial complexes and posets. In particular, new necessary conditions on face numbers and Betti numbers of such complexes and posets are established. These conditions are used to settle in the affirmative Kühnel’s conjecture ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete & Computational Geometry
دوره 15 شماره
صفحات -
تاریخ انتشار 1996